Developmental Toxicology
(Teratogenesis)

- Embryogenesis – a complex process involving cell proliferation, differentiation, migration, and organogenesis
- Predictions
 - Sequence & interrelationships easily disrupted
 - Timing of effects
 - Anything that affects biochemical pathways

Stages of Development

- Preimplantation (Predifferentiation)
 - No teratogenesis
 - All or none effect
- Embryonic Stage
 - Germ layer formation & Organogenesis
 - Embryo most susceptible to teratogenesis
- Fetal Stage
 - Growth & functional maturation
 - Functional abnormalities

Stages of Embryogenesis
Periods of Peak Teratogenesis During Gestation

Access to the Embryo and Fetus

- Placenta
 - Binding to proteins
 - MW< 1000
 - Lipophilic
 - Phagocytosis of proteins
- Maternal biotransformation & excretion
- Fetal metabolism

Dose Response Relationships
Teratogenic Agents

- Radiation
- Infections – Viral & Microbial
 - Alcoholism
 - Diabetes
 - Folic acid deficiency
 - Hyperthermia
 - Phenylketonuria
- Maternal metabolic imbalances
 - Alcoholism
 - Diabetes
 - Folic acid deficiency
 - Hyperthermia
 - Phenylketonuria
- Drugs and Chemicals
 - Thalidomide, Cocaine, Retinoids

Mechanisms

Cytotoxicity – alkylating agents; MNNG
- Limb or organ bud damage
- Embryo lethality

Receptor mediated teratogenicity
- Thalidomide
- Glucocorticoid hormones

Mechanisms

Dna Damage & Mutation
- Somatic vs. germ cells
- Cell cycle perturbation - cyclophosphamide
- Chromosomal aberrations
- Mitotic interference - Inhibition of spindle formation or DNA synthesis may result in incorrect separation of chromosomes
 - Cytosine arabinoside, vincristine, colchicine
- Homeobox Genes
Mechanisms

- Interference with nucleic acid metabolism
 - Cytosine arabinoside, mytomycin C, 6-mercaptopurine
- Substrate deficiency
- Energy deficiency
- Enzyme inhibition
- Maternal and placental homeostasis

Maternal & Developmental Toxicity

Cell Cycle Perturbation