Blood Toxicology

- Introduction
 - Hematopoiesis – Bone Marrow
 - Pluripotent Cell
 - Megakaryocytes, Erythrocytes, Leukocytes
 - Functions of Blood
 - Immunity & non specific defenses
 - CO₂ & O₂ transport
 - pH
 - Coagulation
 - Osmotic balance
 - Nutrient & Waste transport
 - Communications path

Toxic Effects & Pathology

- Erythropoiesis
 - Immature RBCs – reticulocytes & nucleated blast forms
 - Chronic hemolytic diseases
 - Megaloblastic macrocytic anemia
 - Microcytic hypochromic anemia
 - Pancytopenia
 - Aplastic Anemia
Toxic Effects & Pathology

• Platelets
 – Aggregation
 • Aspirin
 • NO
 – Thrombocytopenia <20,000/µL
 • Congenital hemorrhage disorders
 • Myelosuppressive drugs
 • Immune suppressors – Quinedine & Phenacetin

Toxic Effects & Pathology

• Leukocytes
 – Inhibition of diapedesis – glucocorticoids
 – Granulocytopenia <3,000/µL
 • Alkylating agents & antimetabolites
 • Anti-inflammatory drugs
 • Anticonvulsants
 • Toxic shock

Toxic Effects & Pathology

• Erythrocytes
 – Anemia
 • Hemolysis
 • Immunologic sensitization
 – Polycythemia
 • Altitude effect
 • Erythropoietin
 • Co ion
Chemically Induced Hypoxia

- Arterial hypoxia – lower than normal P_{O_2} in arterial blood.
- Anemic hypoxia – lowered oxygen carrying capacity when arterial P_{O_2} and rate of blood flow is normal or elevated.
- Stagnant (hypokinetic) hypoxia – decreased rate of blood flow, as in heart failure & uncorrected vasodilatation.
- Histotoxic hypoxia – under normal oxygenation or elevated P_{O_2}, tissue cells are unable to utilize O_2.

O$_2$ Binding to Hemoglobin

- Hemoglobin (Hb) – MW=67k; four globin chains, 2α and 2β, noncovalently bound to porphorynic heme groups.
- Reversible O_2 binding involving cooperativity between the chains:
 - $Hb(O_2)_4 \leftrightarrow Hb(O_2)_3 + O_2$ K$_1$
 - $Hb(O_2)_4 \leftrightarrow Hb(O_2)_2 + O_2$ K$_2$
 - $Hb(O_2)_4 \leftrightarrow Hb(O_2)_1 + O_2$ K$_3$
 - $Hb(O_2)_4 \leftrightarrow Hb + O_2$ K$_4$

O$_2$ Binding to Hemoglobin

- Physiological regulators
 - pH – Bohr effect
 - 2,3-diphosphoglycerate (2,3 – DPG)
- Toxin effects on dissociation curve
 - Left shift – increased affinity for O_2: aromatic Benzaldehydes
 - Right shift – decreased affinity for O_2: Clofibric acid, Benzaafibrate
Hemoglobin Dissociation

Methemoglobin

- Methemoglobin production
 \(\text{HbFe}^{2+} \rightarrow \text{HbFe}^{3+} \)
 - \(\text{NaNO}_2, \text{H}_2\text{NOH} \)
 - Aromatic amino and nitro compounds – aniline, nitrobenzene, p-Aminopropiophenone
- Methemoglobin reductase (cyt b₅)
 - NADH and NADH diaphorase
 - Alternative reduction pathway – NADPH diaphorase
Histotoxic Hypoxia

- Interference with utilization of O₂ as the final e⁻ acceptor.